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Abstract
Multi-conditional image generation aims to create customized im-
ages that align with multiple specified conditions. Existing methods,
whether through end-to-end training or by fine-tuning adapters to
integrate pre-trained control modules of the same category (e.g.,
LoRA, IP-Adapter, ControlNet, T2I-Adapter), are restricted to a
closed set of predefined input conditions. To overcome this limita-
tion, we propose ModuleTeam, a training-free method for latent
mixture of arbitrary control modules, capable of handling open-set
conditions by incorporating the corresponding modules. The design
of ModuleTeam is rooted in two key findings: (i) modules interfere
with each other at the level of model parameters, and (ii) module
weights contribute to the generated images by affecting the noise
predictions within the diffusion process in an approximately linear
manner. The first finding motivates our latent mixture approach,
which mixes the control modules by aggregating their latent vari-
ables between diffusion model blocks. The second finding enables a
multi-inference module reweighting strategy that balances module
contributions to generation, requiring no additional training or fine-
tuning overhead. Extensive results demonstrate that ModuleTeam
not only outperforms existing methods but also provides flexibility
in the types of conditions and scalability in their number.
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1 Introduction
Diffusion models mark a significant milestone in the field of image
generation, providing a practical approach to synthesizing high-
quality images. While striving for high-quality and high-resolution
images, there is also a growing demand for precise control over
the generation to enable personalized emotional expression and
subtle requirements. The text-to-image paradigm [21, 26, 27, 30]
provides an excellent solution but not a perfect one, as text has
inherent limitations in its expressive capacity. As a result, multi-
conditional image generation has become a widely studied task [1],
with an increasing variety of conditions being incorporated into the
generation process, including text, subject [29], style [32], spatial
location [17], human pose skeletons, edge maps, segmentation
maps, and depth maps [20, 38].

Existingmethods formulti-conditional generation can be broadly
categorized into end-to-end training and adapter-tuning approaches.
End-to-end methods [12–14, 24, 35, 40] typically adopt a joint train-
ing strategy to train a unified model on a large-scale dataset that
accommodates various conditions. While these trained models
can handle multiple conditions and enable zero-shot composition,
they demand substantial computational resources and lack the
flexibility to incorporate unseen conditions. Adapter-tuning meth-
ods [8, 18, 23, 31], on the other hand, design strategies to integrate
pre-trained control modules, such as LoRA [11], ControlNet [38],
IP-Adapter [37], T2I-Adapter [20], or other customized modules,
leveraging their respective effective control over the generation
model. Compared to end-to-end methods, adapter-tuning meth-
ods are more resource-efficient. However, existing adapter-tuning
methods are constrained to combining modules of the same type,
failing to explore the merging of diverse modules. This is a signifi-
cant limitation, as no single type of control module can cover all
possible conditions. For example, LoRA excels at addressing subject
and style conditions, IP-Adapter accepts image inputs, and Control-
Net and T2I-Adapter handles structural conditions like edge and
depth map. In summary, existing methods are limited to a closed
set of predefined conditions, thus failing to meet the requirements
of open-set multi-conditional generation.

Based on the aforementioned discussions, we propose to push
the boundaries of existing methods by exploring strategies to mix
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LoRA 1: A [S1] dog 

LoRA 2: A [S2] cat 

Direct Merge: A photo of a [S1] dog and a [S2] cat 

ModuleTeam (Ours): A photo of a [S1] dog and a [S2] cat 

LoRA (Subject) + LoRA (Subject)

(a) Module Interference Example

LoRA (Style) + IP-Adapter (Image)

LoRA: by Feng Zikai

IP-Adapter: A girl

Direct Merge: A girl, by Feng Zikai

ModuleTeam (Ours): A girl, by Feng Zikai

(b) Module Imbalance Example

Figure 1: Two examples of module interference and imbalance. Between LoRAs, there are incorrect subjects (e.g., dog) and
confused attributes (e.g., color). Between the LoRA and IP-Adapter, style condition suppresses image condition.

control modules of different types, thereby enabling the incorpo-
ration of open-set multiple conditions. However, achieving this
goal presents two non-trivial challenges. (i) The first is module
interference caused by parameter interactions. For instance, both
LoRA and IP-Adapter introduce additional parameters to the Trans-
former block of U-Net within diffusion models, which can lead to
interference when these two modules are used simultaneously. A
theoretical analysis is presented in Section 3.2. (ii) The second is
module imbalance on their contributions to the generated image.
This imbalance arises because different types of control modules
have distinct target conditions, architectural designs, and parame-
ter scales, which lead to uneven influence on the denoising process.
A visual illustration of both challenges is provided in Figure 1.

To tackle the challenges, in this paper, we design amodule-based
training-free latent mixture method (ModuleTeam) for open-set
multi-conditional image generation. To avoid module interference,
we design a latent mixture approach to combine control modules
in the latent space rather than at the model parameter level. Con-
cretely, we load one control module and perform one forward prop-
agation through each U-Net block at a time, and then aggregate the
resulting latent variables between blocks, instead of loading all mod-
ules simultaneously and passing the input through the model once.
To balance module contributions, we introduce a multi-inference
module reweighting strategy that assigns proportional weights to
each module according to the change it induces in the noise pre-
dictions output by the U-Net. This approach is grounded in our
observation that the changes in noise predictions exhibit an approx-
imately linear relationship with the module weights, as illustrated
in Figure 2. Since the final image is derived from the cumulative
noise predictions across multiple timesteps, balancing the influence
on these predictions ensures that each module contributes approx-
imately equally to the final output. Notably, the entire method
requires no additional training or fine-tuning, relying solely on
multiple inference passes.

To validate the effectiveness of our method, we conduct empirical
experiments on a collected dataset that includes diverse conditions,
respectively adapted to different types of control modules. Compar-
ative results demonstrate that ModuleTeam outperforms existing

baselines, and ablation studies confirm that the proposed latent mix-
ture approach and multi-inference module reweighting strategy
contribute to improvements in open-set multi-conditional image
generation. Overall, our contributions are listed as follows.

• To the best of our knowledge, this is the first work to incorporate
control modules of different types into diffusion models for open-
set multi-conditional image generation.

• We propose a latent mixture approach and a multi-inference
module reweighting strategy to effectively address the challenges
of module interference and imbalance.

• We uncover and theoretically explain an approximately linear re-
lationship between module weights and noise prediction changes,
which serves as the basis for determining module weights.

• Empirical results demonstrate that our method outperforms ex-
isting approaches in performance while offering flexibility in the
types of conditions and scalability in their number.

2 Related Work
2.1 Conditional Image Generation
Conditional image generation, also known as controllable image
generation, requires the generated image to comply with specified
conditions [1]. Text-to-image diffusion models [21, 26, 27, 30] are
the most prominent examples, where the condition is a textual
description. With the rapid advancement of diffusion models, a
variety of novel conditions and their corresponding control modules
have emerged. For example, LoRA (Low-Rank Adapter) [11] has
been widely adopted to incorporate conditions including subject [5,
6, 29? ], identity [7, 33], style [10, 32], and so on [3, 4, 22, 39]. IP-
Adapter [37] is specifically designed to handle image conditions.
ControlNet [38] is effective in processing structural conditions,
such as Canny edges, depth maps, normal maps, M-LSD lines, HED
soft edges, ADE20K segmentation, OpenPose, and user sketches.
T2I-Adapter [20] targets conditions like segmentation, sketches,
Canny edges, color, depth, and keypoints. Notably, a single control
module can only handle one condition at a time. As a result, multi-
condition scenarios often require either the development of newly
designed modules or the specific adaptation of existing modules.
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LoRA: A [S1] girl 

ControlNet: Depth T2I-Adapter: Depth

IP-Adapter: Image Reweighting to make the 𝐿𝐿𝐿-norm changes 
in noise prediction close between modules.

Figure 2: Approximately linear relationship between module weights and 𝐿2-norm changes in noise predictions. Based on this
observation, we can reweight the module weights to achieve close 𝐿2-norm changes between modules in the denoising process.

2.2 Multi-Conditional Image Generation
Multi-conditional image generation, as the name suggests, extends
conditional generation to incorporatemultiple conditions. It presents
non-trivial challenges, particularly inmaking generated images con-
sistent with different conditions while maintaining image quality.
Pioneering works can be grouped into two branches based on the
training strategy: end-to-end methods and adapter-tuning methods.

The end-to-end methods focus primarily on innovating model
architectures and training strategies. For example, Cocktail [12]
proposes a generalized ControlNet architecture, a controllable nor-
malisation layer, and a spatial guidance sampling method. Com-
poser [13] explores global and localized conditioning mechanisms
and adopts a joint training strategy to recompose decomposed
images. DiffBlender [14] provides an embedding network and de-
signs local and global self-attention for spatial and non-spatial
tokens. UniControl [24] introduces a task-aware HyperNet for con-
dition selection and trains the model across unique tasks. Uni-
ControlNet [40] designs local and global control adapters, trains
them separately, and integrates them directly. VideoComposer [35]
equips the model with a unified Spatio-Temporal Condition encoder
and leverages a two-stage training for text-to-video generation and
conditions incorporation. Despite their effectiveness, these methods
are resource-intensive and restricted to predefined conditions.

Adapter-tuning methods concentrate on the utilization and inte-
gration of pre-trained control modules, whether existing or custom-
designed. For example, CTRL-Adapter [18] introduces an adapter
with spatial/temporal convolution and attention mechanisms to
map outputs from ControlNet into the diffusion model. Mix-of-
Show [8] tunes embedding-decomposed LoRAs for individual con-
cepts and employs gradient fusion in the center node to combine the
LoRAs. Orthogonal Adaptation [23] independently tunes LoRAs for
each concept while enforcing orthogonality constraints between
them to achieve concept disentanglement. ZipLoRA [31] separately
tunes a LoRA for subject and style, and trains a merge vector to com-
bine the LoRAs by minimizing their cosine similarity. Compared to
end-to-end strategies that require training from scratch, modular
methods significantly reduce the number of trainable parameters
and save substantial computational resources. However, existing
methods are generally limited to integrating control modules of the
same type, such as only ControlNets or only LoRAs.

In this paper, we take a step further by exploring an effective
way to mix control modules of different types for open-set multi-
conditional image generation.

3 Method
In this section, we propose ModuleTeam, a training-free latent
mixture method for control modules. We begin with preliminaries
about Stable Diffusion (Section 3.1). Then we analyze the challenge
of module interference in the parameter space, taking LoRA and IP-
Adapter as examples (Section 3.2). To address this issue, we design a
latent mixture approach (Section 3.3). After that, we present a multi-
inference module reweighting strategy to balance the contributions
of different modules to generation (Section 3.4).

3.1 Preliminaries
Stable Diffusion is a pre-trained latent diffusion model [27] with
key components of an autoencoder (E,D) to transform image pix-
els into latent variables and back, a CLIP [25] text encoder 𝐸𝑇 to
project texts into embeddings, and a U-Net [28] 𝜖𝜃 to perform the
diffusion denoising process by predicting the noise 𝜖 . Delving into
the U-Net architecture, it consists of multiple downsampling, mid-
dle, and upsampling blocks. These blocks are further constructed
from ResNet blocks [9], Transformer blocks [34], and convolutional
layers [15] for the downsampling and upsampling operations.

Currently, mainstream control modules are applied to the U-
Net, with occasional ones for the text encoder. Consequently, our
research focuses on the mixture of control modules within the
U-Net architecture.

3.2 Modules Interference
Between LoRAs. To begin with, we introduce the interference

issue between the modules of the same type. Generally, a LoRA
adapts the parameters of query, key, value, and output projec-
tions𝑊 =

{
𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ,𝑊𝑂 )

}
in the attention layers with Δ𝑊 ={

Δ𝑊𝑄 ,Δ𝑊𝐾 ,Δ𝑊𝑉 ,Δ𝑊𝑂 )
}
, so the attention with LoRA becomes:

Attn (𝑊,Δ𝑊 )

= Softmax
(
(𝑄 + Δ𝑄) (𝐾 + Δ𝐾)𝑇

√
𝑑

)
(𝑉 + Δ𝑉 ) (𝑊𝑂 + Δ𝑊𝑂 ) .

(1)
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Condition

𝑐𝑐CNet: ControlNet 
Condition

𝑐𝑐T2I: T2I-Adapter 
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𝜖𝜖T2I − 𝜖𝜖 2

Multi-Inference Module Reweighting 𝑚𝑚-times Inference

𝑘𝑘𝑖𝑖 =
𝑆𝑆𝛼𝛼𝑖𝑖
𝑇𝑇 𝑆𝑆Δ𝜖𝜖𝑖𝑖
𝑆𝑆𝛼𝛼𝑖𝑖
𝑇𝑇 𝑆𝑆𝛼𝛼𝑖𝑖

∝

𝛼𝛼CNet

𝛼𝛼LoRA1

𝛼𝛼LoRA2

𝛼𝛼IP

𝛼𝛼T2I

𝑆𝑆Δ𝜖𝜖𝑖𝑖 = Δ𝜖𝜖𝑖𝑖𝑖𝑖 𝑖𝑖∈[1,𝑚𝑚]
, 𝑆𝑆𝛼𝛼𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖 𝑖𝑖∈[1,𝑚𝑚]

For 𝑖𝑖 ∈ CNet, LoRA1, LoRA2, IP, T2I ,
𝛼𝛼CNet:𝛼𝛼LoRA1:𝛼𝛼LoRA2:𝛼𝛼IP:𝛼𝛼T2I =

1
𝑘𝑘CNet

:
1

𝑘𝑘LoRA1
:

1
𝑘𝑘LoRA2
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1
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Figure 3: ModuleTeam framework. Yellow (top): Latent Mixture approach mixes modules by summing their latent variables in
the latent space between network blocks of the U-Net. Blue (bottom): Multi-Inference Module Reweighting strategy determines
module weight proportions based on approximately linear relationship between module weights and noise prediction changes.

Without loss of generality, we consider the simplest case of two
LoRAs and observe the dot product score between query and key:

Score (𝑊,Δ𝑊1,Δ𝑊2 )

= (𝑄 + Δ𝑄1 + Δ𝑄2 ) (𝐾 + Δ𝐾1 + Δ𝐾2 )𝑇

= (𝑄𝐾𝑇 +𝑄Δ𝐾𝑇
1 + Δ𝑄1𝐾

𝑇 + Δ𝑄1Δ𝐾
𝑇
1 )

+ (𝑄𝐾𝑇 +𝑄Δ𝐾𝑇
2 + Δ𝑄2𝐾

𝑇 + Δ𝑄2Δ𝐾
𝑇
2 )

+ (−𝑄𝐾𝑇 + Δ𝑄1Δ𝐾
𝑇
2 + Δ𝑄2Δ𝐾

𝑇
1 )

= Score(𝑊,Δ𝑊1 ) + Score(𝑊,Δ𝑊2 ) + 𝑓 (𝑊,Δ𝑊1,Δ𝑊2 ) .

(2)

The entangled item 𝑓 (𝑊,Δ𝑊1,Δ𝑊2) reflects the mutual interfer-
ence between the two LoRAs, which is further amplified by the
subsequent Softmax and the multiplication with value and output
projection matrices in the attention mechanism.

Between LoRA and IP-Adapter. To elucidate the interference issue
between modules of different types, we take LoRA and IP-Adapter
as an example. IP-Adapter enables diffusionmodels to process image
input by introducing additional cross-attention with new parame-
ters𝑊 ′ =

{
𝑊 ′
𝐾
,𝑊 ′

𝑉

}
alongside the original cross-attention, so the

attention with an IP-Adapter becomes:

Attn
(
𝑊,𝑊 ′) = (

Softmax
(
𝑄𝐾𝑇

√
𝑑

)
𝑉 + Softmax

(
𝑄 (𝐾 ′ )𝑇

√
𝑑

)
𝑉 ′

)
𝑊𝑂

= Attn (𝑊 ) + Attn
(
𝑊 ′) . (3)

Consider the attention layer with a LoRA and an IP-Adapter:

Attn(𝑊,Δ𝑊,𝑊 ′ )

=

(
Softmax

(
(𝑄 + Δ𝑄 ) (𝐾 + Δ𝐾 )𝑇

√
𝑑

)
(𝑉 + Δ𝑉 )

+ Softmax
(
𝑄 (𝐾 ′ )𝑇

√
𝑑

)
𝑉 ′

)
(𝑊𝑂 + Δ𝑊𝑂 )

= Softmax
(
(𝑄 + Δ𝑄 ) (𝐾 + Δ𝐾 )𝑇

√
𝑑

)
(𝑉 + Δ𝑉 ) (𝑊𝑂 + Δ𝑊𝑂 )

+ Softmax
(
𝑄 (𝐾 ′ )𝑇

√
𝑑

)
𝑉 ′𝑊𝑂 + Softmax

(
𝑄 (𝐾 ′ )𝑇

√
𝑑

)
𝑉 ′Δ𝑊𝑂

= Attn(𝑊,Δ𝑊 ) + Attn(𝑊 ′ ) + 𝑔 (𝑊,Δ𝑊,𝑊 ′ ),

(4)

it is observed that this scenario also introduces an entangled term
𝑔(𝑊,Δ𝑊,𝑊 ′) between the LoRA and the IP-Adapter, which inter-
feres with both modules.

3.3 Latent Mixture
To address module interference, we design a latent mixture method
for modules by aggregating their intermediate latent variables in
the latent space between network blocks of the U-Net. Following
ControlNet, we use network block as a unified term for the down-
sampling, middle, and upsampling blocks and denote it as F (Θ),
where Θ represents all parameters in the block F . For modules,
we represent LoRA with the parameters ΔΘ, IP-Adapter with Θ′,
ControlNet asMCNet (Φ), and T2I-Adapter asMT2I (Ψ).

Consider a generalized case where a diffusionmodel incorporates
𝑛1 LoRAs, 𝑛2 IP-Adapters, 𝑛3 ControlNets, and 𝑛4 T2I-Adapters,
with the input to a network block as 𝑥 and the conditions as 𝑐 , the
latent mixture at this block can be expressed as:

𝑛1∑︁
𝑖=1

F(𝑥, 𝑐LoRA,𝑖 ;Θ,ΔΘ𝑖 ) +
𝑛2∑︁
𝑗=1

F(𝑥, 𝑐IP, 𝑗 ;Θ,Θ′
𝑗 )

+
𝑛3∑︁
𝑘=1

MCNet (𝑥, 𝑐CNet,𝑘 ;Φ𝑘 ) +
𝑛4∑︁
𝑙=1

MT2I (𝑐T2I,𝑙 ;Ψ𝑙 ) .
(5)

Compared to direct merge where additional conditions and pa-
rameters are loaded into the model without any dedicated design:

F
(
𝑥, {𝑐LoRA}𝑛1 , {𝑐IP}𝑛2 , {𝑐CNet}𝑛3 , {𝑐T2I}𝑛4 ;

Θ, {ΔΘ}𝑛1 , {Θ′ }𝑛2 , {Φ}𝑛3 , {Ψ}𝑛4
)
,

(6)

latent mixture offers the following advantages: (i) Each condition
processes only the parameters of its corresponding module, avoid-
ing interference from other modules. (ii) The unified mixture in
latent space is scalable to accommodate future and unseen modules.
(iii) Aggregation by summing latent variables allows for convenient
reweighting of different modules.
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LoRA: A [S1] dog 

ControlNet: Depth Map 𝛼𝛼CNet = 0.1
𝛼𝛼LoRA = 0.70
𝛼𝛼CNet = 0.35 𝛼𝛼CNet = 0.7 𝛼𝛼CNet = 0.1

𝛼𝛼LoRA = 1.0
𝛼𝛼CNet = 0.5 𝛼𝛼CNet = 1.0

Figure 4: We visualize the generated images alongside the corresponding 𝐿2-norm changes in noise prediction. When the
𝐿2-norm changes are close to each other, the contribution of the given conditions to the images achieves a relative balance.

3.4 Multi-Inference Module Reweighting
Apart from the mixture mechanism, the proportion in the mix-
ture also plays a crucial role. Notably, the optimal weight distri-
bution across control modules can vary depending on individual
preferences or specific generation goals. In light of this, our work
investigates a default option: balancing the influence of different
conditions on the generated image in the absence of user-specified
condition weights.
Objective 1. Find a set of weights {𝛼}𝑛 for the modules {M}𝑛
such that, for any 𝑖, 𝑗 ∈ [1, 𝑛], the weighted modules 𝛼𝑖M𝑖 and
𝛼 𝑗M 𝑗 have the balanced contribution to the generated image.

Statement 1. The contribution of conditions to the images gener-
ated by a diffusion model correlates with the changes induced by the
conditions on the noise predictions across all denoising steps. If the
magnitude of the changes in noise predictions caused by the conditions
is similar, the contributions of the conditions to the final images are
approximately equal.

Statement 1 is more of a hypothesis than a definitive claim, but
it is reasonable since the final image results from the cumulative
effect of noise predictions across all denoising steps. While theoret-
ical proof is unavailable, the empirical experiments visualized in
Figure 4 have provided partial validation for this statement. Based
on Statement 1, Objective 1 can be transformed into Objective 2.
Objective 2. Find a set of weights {𝛼}𝑛 for the modules {M}𝑛 such
that for any 𝑖, 𝑗 ∈ [1, 𝑛], the weighted modules 𝛼𝑖M𝑖 and 𝛼 𝑗M 𝑗

leads to the equal 𝐿2-norm changes in noise predictions:

∀𝑖, 𝑗 ∈ [1, 𝑛], 𝑡 ∈ [1,𝑇 ],
| |𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐𝑖 , 𝛼𝑖M𝑖 ) − 𝜖𝜃 (𝑥𝑡 , 𝑡 ) | |2

= | |𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐 𝑗 , 𝛼 𝑗M 𝑗 ) − 𝜖𝜃 (𝑥𝑡 , 𝑡 ) | |2,
(7)

where𝑇 is the denoising steps and 𝜖𝜃 (·) is the predicted noise with
the parameters 𝜃 of the U-Net at the timestep 𝑡 .

Statement 2. For each denoising step, the changes in noise pre-
dictions caused by conditions exhibit an approximately linear rela-
tionship with the control module weights, provided the weights are
sufficiently small.

To prove Statement 2, we first divide the U-Net into multiple
network blocks, then further into ResNet blocks and Transformer
blocks, and ultimately break down into attention layers, convolu-
tional layers, linear layers, activation layers, normalization layers,

and matrix transformation layers. Each layer is analyzed individu-
ally for the changes in results after incorporating weighted modules.
Herein, we take the attention layer as an example.

Suppose the input is 𝑥 and module weight is 𝛼 , the change in
a self-attention Attn(𝑊 ) with weighted LoRA can be derived by
starting from the dot product score:

ΔScore = Score(𝑊,Δ𝑊 ) − Score(𝑊 )

= (𝑄 + 𝛼Δ𝑄 ) (𝐾 + 𝛼Δ𝐾 )𝑇 − 𝑄𝐾𝑇

= 𝛼 (𝑄Δ𝐾𝑇 + Δ𝑄𝐾𝑇 ) + 𝛼2Δ𝑄Δ𝐾𝑇 .

(8)

For Softmax, it can be analyzed with a first-order approximation:
Softmax(Score(𝑊,Δ𝑊 ) )𝑖 𝑗

=
exp(Score(𝑊,Δ𝑊 )𝑖 𝑗 )∑
𝑘 exp(Score(𝑊,Δ𝑊 )𝑖𝑘 )

=
exp(Score(𝑊 )𝑖 𝑗 ) exp(ΔScore𝑖 𝑗 )∑
𝑘 exp(Score(𝑊 )𝑖𝑘 ) exp(ΔScore𝑖𝑘 )

.

(9)

According to Taylor’s Formula, there are exp(𝑎) ≈ 1 + 𝑎 and 1
𝑎+𝑏 ≈

1
𝑎 −

𝑎
𝑏2

when 𝑏 ≪ 𝑎. If we abbreviate
∑
𝑘 exp(Score(𝑊 )𝑖𝑘 )ΔScore𝑖𝑘

to Δ𝑍 and
∑
𝑘 exp(Score(𝑊 )𝑖𝑘 ) to 𝑍 , Eq. (9) becomes:
Softmax(Score(𝑊,Δ𝑊 ) )𝑖 𝑗

≈
exp(Score(𝑊 )𝑖 𝑗 ) (1 + ΔScore𝑖 𝑗 )

𝑍 + Δ𝑍

≈
exp(Score(𝑊 )𝑖 𝑗 )

𝑍
+
exp(Score(𝑊 )𝑖 𝑗 )

𝑍
ΔScore

− Δ𝑍

𝑍 2 exp(Score(𝑊 )𝑖 𝑗 ) (1 + ΔScore𝑖 𝑗 ) .

(10)

For a small 𝛼 , the change in Softmax function becomes:
ΔSoftmax = Softmax(Score(𝑊,Δ𝑊 ) ) − Softmax(Score(𝑊 ) )

≈
(
Softmax(Score(𝑊 ) (𝑄Δ𝐾𝑇 + Δ𝑄𝐾𝑇 )

)
𝛼.

(11)

If we ignore all second-order terms such as 𝛼2Δ𝑄Δ𝐾𝑇 and neg-
ligible terms such as Δ𝑍

𝑍 2 , we can derive an approximately linear
relationship between the module weight and the attention change:

Attn(𝑊,Δ𝑊 )
= Softmax(Score(𝑊,Δ𝑊 ) ) (𝑉 + 𝛼Δ𝑉 ) (𝑊𝑂 + 𝛼𝑊𝑂 )
= Attn(𝑊 ) + ΔAttn1 + ΔAttn2 + ...,

(12)

where ΔAttn𝑑 is the𝑑𝑡ℎ-order term in the form of 𝛼𝑑ℎ𝑑 (𝑥,𝑊 ,Δ𝑊 ).
When the input 𝑥 and the parameters𝑊 and Δ𝑊 are fixed, the
result of the function ℎ1 is a constant. Ignoring high-order terms,
the attention change is ΔAttn1, exhibiting an approximately linear
relationship with the weight 𝛼 .
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Table 1: Quantitative comparison between baselines and ModuleTeam method. “ModuleTeam (LoRAs)” represents the version
of ModuleTeam that includes only LoRAs. The symbol “↑” indicates that higher values correspond to better performance, and
vice versa. The best results are in bold. Since the baselines cannot handle all conditions, unavailable results are marked as “-”.

Condition Method Subject Style Image Canny Sketch Depth
(DINO ↑) (CLIP-I ↑) (CLIP-I ↑) (SSIM ↑) (SSIM ↑) (MSE ↓)

Subject-Subject

Multiple LoRAs 0.4389 - - - - -
Cones 2 0.2382 - - - - -
FastComposer 0.2933 - - - - -
Custom Diffusion 0.3935 - - - - -
ModuleTeam (LoRAs) 0.4784 - - - - -

Subject-Style
Multiple LoRAs 0.5842 0.5813 - - - -
ZipLoRA 0.6530 0.5321 - - - -
ModuleTeam (LoRAs) 0.6656 0.6022 - - - -

Image-Image Multiple IP-Adapters - - 0.6950 - - -
ModuleTeam (IP-Adapters) - - 0.7436 - - -

Canny-Sketch
Canny-Depth
Sketch-Depth

Multiple T2I-Adapters - - - 0.5906 0.8392 90.17
Multiple ControlNets - - - 0.8515 0.8035 90.17
DiffBlender - - - - 0.6619 96.94
Uni-ControlNet - - - 0.5168 0.7002 92.51
ModuleTeam (T2I-Adapters) - - - 0.6091 0.8634 87.35
ModuleTeam (ControlNets) - - - 0.8776 0.8421 82.41

All Conditions Direct Merge 0.3660 0.5040 0.6218 0.4848 0.7113 108.3
ModuleTeam 0.4104 0.5582 0.7027 0.6466 0.7571 98.82

With weighted IP-Adapter, the attention change is:
ΔAttn = Attn(𝑊,𝑊 ′ ) − Attn(𝑊 )

=

(
Softmax

(
𝑄 (𝐾 ′ )𝑇

√
𝑑

)
𝑉 ′𝑊𝑂

)
𝛼.

(13)

It is clear that ΔAttn is linearly related to 𝛼 .
With weighted ControlNet or T2I-Adapter, the input 𝑥 be-

comes 𝑥+𝛼Δ𝑥 , where Δ𝑥 isMCNet (𝑥, 𝑐CNet;Φ) orMT2I (𝑥, 𝑐T2I;Ψ).
In this case, by rewriting Δ𝑄 from 𝑥 (𝑊𝑄 + Δ𝑊𝑄 ) to (𝑥 + 𝛼Δ𝑥)𝑊𝑄 ,
Eq. (8) to (12) still hold. Therefore, the conclusion of the approxi-
mately linear relationship remains valid.

The analysis of other layers is in the Supplementary Material.
Overall, the U-Net 𝜖𝜃 with weighted modules 𝛼M can be abstracted
into the following expression:

𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐, 𝛼M) = 𝜖𝜃 (𝑥𝑡 , 𝑡 ) + Δ𝜖1 + Δ𝜖2 + ...
≈ 𝜖𝜃 (𝑥𝑡 , 𝑡 ) + 𝛼 · ℎ1 (𝑥, 𝑡, 𝑐, 𝜃,M), (14)

where Δ𝜖1 is the first-order change linearly related to 𝛼 with the
fixed 𝑥𝑡 , 𝑡 , 𝜃 , andM. Therefore, Statement 2 is proved. From Eq. (14),
we derive | |𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐, 𝛼M) − 𝜖𝜃 (𝑥𝑡 , 𝑡) | |2 ∝ 𝛼 , so Objective 2 can be
further transformed into Objective 3.
Objective 3. Estimate the slope set {𝑘}𝑛 of the approximately linear
relationship between module weights and the changes in noise
prediction. Find a set of weights {𝛼}𝑛 such that for any 𝑖, 𝑗 ∈ [1, 𝑛],
there is𝛼𝑖𝑘𝑖 = 𝛼 𝑗𝑘 𝑗 to ensure equal 𝐿2-norm changes, whichmeans:

𝛼1 : 𝛼2 : ... : 𝛼𝑛 =
1
𝑘1

:
1
𝑘2

: ... :
1
𝑘𝑛
. (15)

It is worth noting that the linear relationship is approximate
primarily because timestep 𝑡 is in a range [1,𝑇 ] and input 𝑥𝑡 are

not fixed but depends on random noise input and additional con-
ditions besides 𝑡 . Therefore, we need to sample a set of module
weights S𝛼 = [𝛼𝑖 𝑗 ]𝑖∈[1, 𝑛]𝑗∈[1,𝑚] , conduct multiple inference processes,
and calculate the corresponding set of changes in noise prediction
SΔ𝜖 = [Δ𝜖𝑖 𝑗 ]𝑖∈[1, 𝑛]𝑗∈[1,𝑚] , where𝑚 is the inference number. Thus, we
can estimate 𝑘𝑖 that satisfies S𝛼𝑖𝑘𝑖 = SΔ𝜖𝑖 :

𝑆𝛼𝑖 = 𝑆𝛼 [𝑖, :], SΔ𝜖𝑖 = SΔ𝜖 [𝑖, :],

𝑘𝑖 = (𝑆𝑇𝛼𝑖𝑆𝛼𝑖 )
−1𝑆𝑇𝛼𝑖 SΔ𝜖𝑖 , 𝑖 ∈ [1, 𝑛],

(16)

and further determine the weight proportions between modules.
This reweighting strategy significantly reduces the effort and

time required for users to carefully perform grid searches and eval-
uate different weight combinations for multiple modules. Suppose
the time complexity of a single search is 𝑂 (1), the search step size
is 𝑠 , and the weight range is [0, 1], the time complexity of a full
grid search over 𝑛 modules is 𝑂 ((1/𝑠)𝑛). In contrast, our method
requires only 𝑂 ((1/𝑠) +𝑚), where 𝑂 (𝑚) accounts for sampling
by multiple inferences and 𝑂 (1/𝑠) corresponds to determining the
specific weights. In practice, we fix the maximum weight to 1 and
determine the remaining weights accordingly, reducing the overall
complexity to 𝑂 (𝑚).

4 Experiments
In this section, we describe the experimental setup (Section4.1),
present the performance of ModuleTeam through a comparative
study (Section 4.2), and provide further analysis via ablation studies
(Section 4.3). Finally, we detail the empirical way to select the
hyperparameter, namely the inference number𝑚 (Section 4.4).
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Figure 5: Qualitative comparison on multi-condition generation.

4.1 Experimental Setup
Datasets. We construct a dataset for open-set multi-conditional

image generation, consisting of 10 subjects, 10 styles, 20 images, 10
Canny edge maps, 10 sketch maps, and 20 depth maps. The dataset
is sourced from DreamBench [29], CustomConcept101 [16], IP-
Adapter dataset [37], HuggingFaces, Civitai, and Unsplash. For a fair
and robust evaluation, we generate 1000 images for each condition
combination, such as subject-image or style-sketch-depth. Prompts
are constructed by following the format of “an image of [style],
[image], [canny], [depth]”. Dataset samples and implementation
details are provided in the Supplementary Material.

Comparable Methods. We compare our method with existing
multi-conditional image generation approaches based on the types
of conditions they support. Cones 2 [19], FastComposer [36], and
Custom Diffusion [16] are designed for generating images condi-
tioned on multiple subjects or concepts. ZipLoRA [31] focuses on
the combination of subject and style. Cocktail [12], DiffBlender [14],
and Uni-ControlNet [40] integrate multiple structural conditions,
such as Canny edge, sketch, and depth maps.

Evaluation Metrics. To evaluate controllability, we adopt specific
metrics tailored to different conditions, following previous works.
DINO [2] is the average pairwise cosine similarity between ViT-
S/16 DINO embeddings, which is recommended to measure subject
fidelity [29]. CLIP-I [25] is the average pairwise cosine similarity
between ViT-L/14 CLIP embeddings and is commonly used to assess
style [31, 32] and image fidelity [37]. SSIM (Structural Similarity
Index Measure) evaluates the structural similarity between Canny
edge or sketch maps. MSE (Mean Squared Error) is employed to
quantify pixel-wise differences in depth maps.

4.2 Main Results
Quantitative Results. Table 1 presents the main results of our

quantitative experiments. Following prior works, we select the
multi-conditional generation tasks that allow for fair comparisons
with state-of-the-art methods. In addition, we include the direct

Subject
Image LoRA-IP-Adapter ModuleTeam Style

Image LoRA-IP-Adapter ModuleTeam

Figure 6: Subject-image and style-image generation.

Subject
Depth LoRA-ControlNet ModuleTeam Style

Canny LoRA-ControlNet ModuleTeam

Figure 7: Subject-depth and style-canny generation.

merging of modules in the same type as competitive baselines. Fi-
nally, we evaluate the performance of ModuleTeam under the most
general setting where all condition types and their corresponding



MM ’25, October 27–31, 2025, Dublin, Ireland Yuwei Zhou et al.

Image
Canny IP-Adapter-ControlNet ModuleTeam Image

Depth IP-Adapter-ControlNet ModuleTeam

Figure 8: Image-canny and image-depth generation.

modules are integrated. The results demonstrate that ModuleTeam
consistently outperforms all baselines while supporting flexible and
scalable integration of diverse conditions.

Qualitative Results. Figures 5 to 8 showcase the qualitative re-
sults, focusing on combinations of conditions corresponding to
modules of different types. It can be observed that the direct merge
baseline often overemphasizes certain conditions while overlook-
ing others. In contrast, ModuleTeam maintains subject consistency
while effectively preserving the intended style and image in both
subject-style and subject-image generation. Similarly, in image-
Canny and image-depth generation, ModuleTeam produces more
natural and coherent outputs that better integrate conditions. Ad-
ditional qualitative results are in the Supplementary Material.

4.3 Ablation Studies
To evaluate the effectiveness of the two key components of Mod-
uleTeam, latent mixture and module reweighting, we conduct an
ablation study on subject-subject and style-image generation tasks.
As shown in Table 2 and Figure 9, both components play an indis-
pensable role in our method. Module reweighting prevents certain
conditions from being suppressed by others, ensuring that all spec-
ified conditions are preserved. Meanwhile, latent mixture mitigates
mutual interference between modules, thereby improving fidelity
to each individual condition.

Table 2: Ablation on latent mixture and module reweighting.

Subject-Subject Style-Image
(DINO ↑) (CLIP-I ↑) (CLIP-I ↑)

Direct Merge 0.4389 0.5333 0.8881
w/o Reweighting 0.4724 0.5384 0.8811
w/o Latent Mixture 0.4413 0.5198 0.9004
ModuleTeam Full 0.4784 0.5419 0.9100

4.4 Hyperparameter Selection
ModuleTeam introduces only one hyperparameter, the inference
number𝑚 used in the multi-inference module reweighting. This

w/o Reweighting w/o Latent Mixture ModuleTeamSubject Subject

w/o Reweighting w/o Latent Mixture ModuleTeamStyle Image

Figure 9: Ablation on latentmixture andmodule reweighting.

hyperparameter influences both the accuracy of estimating 𝑘 and
the computational cost, thus requiring a trade-off in selection. To
determine a suitable value for𝑚, we perform experiments by sam-
pling different conditions and weight combinations 1000 times to
compute a reference 𝑘 value for each condition, which we treat as
ground truth. We then plot the relative error against varying values
of𝑚 to identify a small𝑚 that keeps the relative error of 𝑘 below
5%. As shown in Figure 10, we set𝑚 = 20 for our method.

Figure 10: Hyperparameter selection of inference number𝑚.
To ensure the relative error of 𝑘 within 5%, we select𝑚 as 20.

5 Conclusion
In this paper, we propose a training-free latent mixturemethod to in-
corporate arbitrary control modules for open-set multi-conditional
image generation. Specifically, we design a latent mixture approach
to effectively mitigate module interference and a multi-inference
module reweighting strategy to balance module contributions dur-
ing generation. Extensive experiments demonstrate thatModuleTeam
not only outperforms existing approaches but also exhibits strong
flexibility and scalability in handling diverse types and varying
numbers of target conditions.
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